The Enemy Release Hypothesis

Investigating patterns in Michigan flora to test whether natural enemies promote invasion

Dave Williams
Liz Schultheis
Jen Lau
Goals for today:

- Discuss invasive species of Michigan, and one of the major hypotheses on their success – ERH
- Provide resources for the classroom that can be used to address Next Generation Science Standards
- Discuss ways to use this activity in your own classroom/schoolyard
- Introduce Data Nuggets and other teaching materials available on MSU’s GK-12 website
What is an invasive species?

- Introduced from another area by people
- Aggressively grow and take over
 - Harm native species, reduce biodiversity
 - Cost people time and money
To combat Asian carp other invasive species, which could threaten the Great Lakes ecosystem and its $7 billion fishing industries, the resources defense council has proposed physical barriers to separate Chicago waterways and Lake Michigan from the Mississippi.

- NY Times, November 2011
The insects and fungi that feed on Garlic Mustard in its native habitat are not present in NA, increasing its seed productivity and allowing it to out-compete native plants. Additionally, because white-tailed deer rarely feed on Garlic Mustard, large deer populations may help to increase its population densities by consuming competing native plants.
Introduced in 1800s in ship ballast. Infestations result in dramatic disruption to water flow and sharp declines in biodiversity as purple loosestrife crowds out native plant species. Biocontrol is currently reducing loosestrife invasions – K-12 classes raised and released beetles.
1. Invasive species escape enemies from their native range
2. Results in reduced damage
3. And increased invasiveness

Keane & Crawley 2002, Hallett 2006

ERH: Enemy Release Hypothesis

When a species is moved to a new area, it escapes the natural enemies that once controlled it, resulting in increases in growth and spread.

Keane & Crawley 2002, Hallett 2006
One of the early and drastic prickly pear treatment methods - fumes from a boiling arsenic mixture drifting through the scrub (circa 1919 - photographer unknown).

From
www.northwestweeds.nsw.gov.au
Terminology you should know!

Native Species: an organism that is living in an area for entirely natural reasons, with no human intervention involved.

Invasive species: an organism that usurps the habitat of other species, causing the decline and disappearance of the native species.

Natural Enemy: a biological interaction where a predator feeds on (or a disease infects) its prey.
Scenario 1

On your daily walk outside in the forest you spot some plants; the *Idyllic isabellium*, the *Phylogenic phineas*, and the *Ferb fernius*. The *Phylogenic phineas* is a new plant that is really spreading across the forest floor. Looking upon the leaves you see very little leaf damage. The *Ferb fernius* on the other-hand was a well established plant for many generations, but has multiple holes and cuts all over the leaves and seem to be decreasing its appearance in the forest. Finally the *Idyllic Isabellium* is a brand new plant that you have never seen. The leaves seem to be in great condition, but there is only a small amount on the forest floor.

Does this scenario support the Enemy Release Hypothesis? Why or why not?
How can we test the ERH?

MEASURE HERBIVORY!!!

Herbivory is the state or condition of feeding on plants.

What causes herbivory?

• Insects
• Mammals, birds, and reptiles

What does herbivory look like on a plant?
Examples of different types of herbivory on a leaf.

- Leaf tissue removed
- Damage from leaf miner
Close In-Counters

• How is herbivory calculated?
 – Can you just count the number of holes in each leaf? Why or why not?
 – What may be a better way to calculate herbivory?
 1. Lay the leaf on a piece of graph paper.
 2. Make an estimation of area of the plant, each square on standard graph paper is 1 cm2.
 3. Now estimate the area of herbivory of the plant using the same grid system.
 4. Calculate the percent of herbivory.
 – ($\text{Area Damaged} / \text{Leaf Area}$) \times 100
Experimental Design

• Sampling techniques
 – Randomization
 – Consistent between species and groups

• Things to measure
 – Herbivory
 – Growth
Go into the field!
The Three Oaks Problem

The English, Red, and White Oak are a population of trees found in Michigan. The Red and White Oak are native species to the area while the English is nonnative. Calculate the herbivory of the following leaves to see if the ERH is supported or rejected.
Enemy Release Prediction:

- Native
- Invasive

Amount of Herbivory

Native > Invasive
English Oak
Red Oak
White Oak
Data

• Using the class data graph the mean area of each leaf, area of herbivory, and percentage of herbivory.

• Which leaf had the highest herbivory?

• Do the three oaks support or reject the Enemy Release Hypothesis? How?
Investigate the Enemy Release Hypothesis!

Norway Maple (I) Sugar Maple (N)
Norway Maple
Sugar Maple
Garlic Mustard (I) vs...
Garlic Mustard
Honeysuckle (I) vs...
Red Honeysuckle (N)
Honeysuckle
Red Honeysuckle
Asian Bittersweet (I) vs...
American Bittersweet (N)
Asian Bittersweet
American Bittersweet
Dame’s Rocket (I) vs...
Dame’s Rocket
Multiflora Rosa (I) vs...
Prairie Rose (N)
Multiflora Rose
Prairie Rose
Purple Loosestrife (L) vs...
Blue Vervain (N)
Purple Loosestrife
Blue Vervain
Canadian Thistle (I) vs...
Tall Thistle (N)
Canadian Thistle
Tall Thistle
Summary

- Did the different species reject or support the Enemy Release Hypothesis?
- How close were you predicted results to the actual observe data?
- Looking at the data from other groups, were your results similar or different? If there were different results come up with reason why that happened.
Do Herbivores Prefer Local or Exotic Foods?
Testing the Enemy Release Hypothesis
Marcia Angle & Liz Schultheis

<table>
<thead>
<tr>
<th>OVERVIEW</th>
<th>Students will examine herbivory on exotic vs. native tree species planted into plantations in the Kellogg Forest. We will use our data to test the Enemy Release Hypothesis, which posits that exotic species escape from specialized natural enemies in their invaded range, contributing to their success. Students will develop predictions, design experimental sampling methods, collect data, and create graphs to summarize data.</th>
</tr>
</thead>
</table>
| OBJECTIVES | At the conclusion of the lesson, students will be able to:
- Give reasons why invasive species are so successful in their introduced range and can displace native species
- Compare ecosystem processes acting on native and exotic species
- Identify new plants species and different types of herbivore damage
- Present data in visual format for interpretation |
| LENGTH OF LESSON | To complete the lesson would take two class sessions. The first session would be used to identify the questions of the study and provide relevant background information. Teachers will present the species to be used in the study and describe the Enemy Release Hypothesis and the success of invasive species. Students would practice identifying the species and the types of herbivore damage, without being told which species were exotic or native. At the end of |
Exercises in Evidence-Based Claims and Graphing

DATA Nugget

Data Nuggets are worksheets that give students practice interpreting quantitative information and making claims based on evidence. Each worksheet asks students to answer a scientific question using real data collected by scientists at Michigan State University. These materials are being developed by NSF-funded GK-12 fellows at Michigan State University’s Kellogg Biological Station in collaboration with K-12 teachers in southwest Michigan.

<table>
<thead>
<tr>
<th>Level</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>Upper Elementary and above</td>
</tr>
<tr>
<td>Level 2</td>
<td>Middle School and above</td>
</tr>
<tr>
<td>Level 3</td>
<td>High School</td>
</tr>
<tr>
<td>Level 4</td>
<td>Advanced High School students (e.g., Honors and AP Biology)</td>
</tr>
<tr>
<td></td>
<td>College undergraduates</td>
</tr>
</tbody>
</table>

http://kbsgk12project.kbs.msu.edu/data-nuggets/
Do invasive species escape their enemies?

Invasive species, like zebra mussels and garlic mustard, are species that have been introduced by humans to a new area and negatively impact places they invade. Invasive species cost the United States over $100 billion per year by damaging habitats, displacing native species, and interfering with human interests. Researchers at the Kellogg Biological Station (KBS) are studying invasive plant species and how release from enemies (like disease, predators, and herbivores) may make species more invasive. Scientists predict that invasive species may be more likely to escape their enemies because, while native species get lots of damage from enemies, invasive species are not as likely to get damaged. For example, if a native plant species has tons of insects that can eat it, or none, this could explain how the invasive plants can take space from native species. Researchers find that both types of species have the similar number of enemies. If the damage is high, this might mean that enemy release is not a good explanation for why invasive species are invasive.
Do insects prefer local or foreign foods?

Insects that feed on plants, called herbivores, can have big effects on how plants grow. They can change the size and shape of plants, the number of flowers and seeds, and even what species can survive in a habitat. For this reason, scientists study how insects and plants interact, and how much damage insects to do plants. A plant with more herbivore damage will most likely grow smaller and produce fewer seeds.

Plants can protect themselves from herbivores. For example, plants produce defense chemicals in their leaves or protect leaves with small hairs that make it hard for insects to take a bite. Native plants are species that naturally occur in an area. Native plants and insects have grown together for thousands of years, so native plant defenses tend to be effective. An exotic plant is one that people have moved into new areas, and has the potential to become an invasive species that can take over habitats. An exotic plant may not have defenses against the insects occurring in its new range, and therefore may receive more damage than native species. More

http://kbsgk12project.kbs.msu.edu/data-nuggets/
Thank you!

Lau Lab:
 Jen Lau
 Mark Hammond
 Tyler Basset
 Tomomi Suwa

GK-12:
 Tom Getty

CEU Code 162