
Darwin builds better cars Lessons evolving online vehicles

NABT 2012 Anne Royer, Elizabeth Schultheis, Louise Mead

Evolution & Engineering

- Introduce a program that incorporates evolutionary and engineering principles to build cars best adapted to their track
- Designing vehicles is a great hook to get students thinking about adaptation and evolution

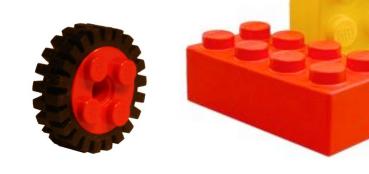
You as an engineer: Create a car that is best adapted to it's environment

(a car's "fitness" is dependent on how far it can travel in the environment)

Evolution & Engineering

- Introduce a program that incorporates evolutionary and engineering principles to build cars best adapted to their track
- Designing vehicles is a great hook to get students thinking about adaptation and evolution
- Start with Lego cars to get them engaged
- Move into working with online program Testing convergent evolution and adaptation
- Extend the lesson to combine natural selection with design

You as an engineer:

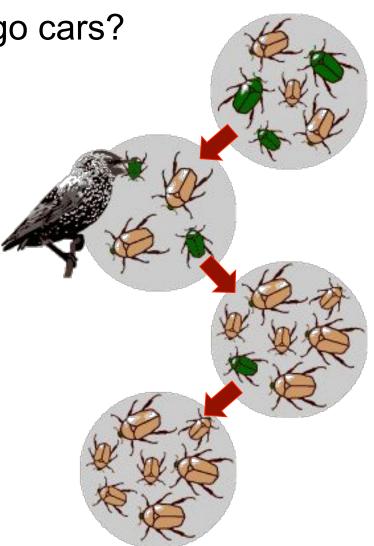

build the best Lego car you can

YOU CAN USE:

- Up to four wheels (0-4)
- One platform (gray piece)
- Up to four additional parts (0-4) (any other color)

Trial runs: the goal is to get your car to go as far as possible – write name and best time on the board

After everyone has their starter pieces, you can pick up more pieces (or remove them!) to engineer a faster car



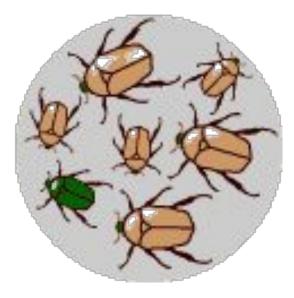
Integrating evolution and engineering: Using biological concepts to solve problems


How can we use principles from evolution to improve our Lego cars?

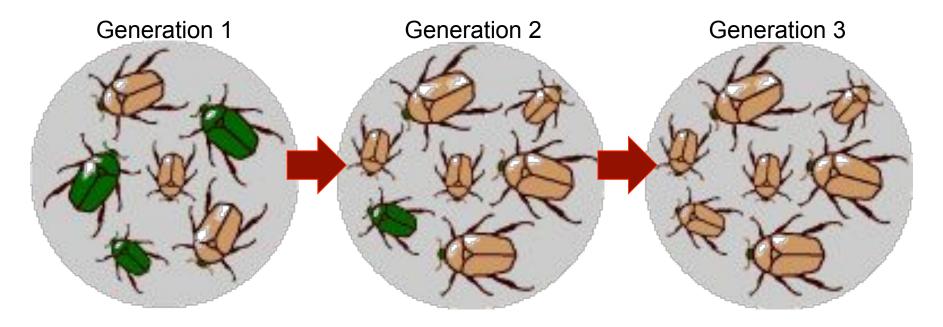
- Variation
- Inheritance
- Selection
- Time

How can we use principles from evolution to improve our Lego cars?

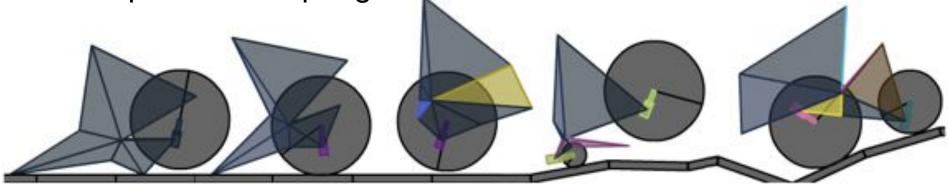
• Variation: the fuel for natural selection


How can we use principles from evolution to improve our Lego cars?

• Selection: acts on variation in a nonrandom way, leaving behind individuals with beneficial traits


How can we use principles from evolution to improve our Lego cars?

• **Inheritance:** individuals with beneficial traits will survive better and pass on more genes to future generations

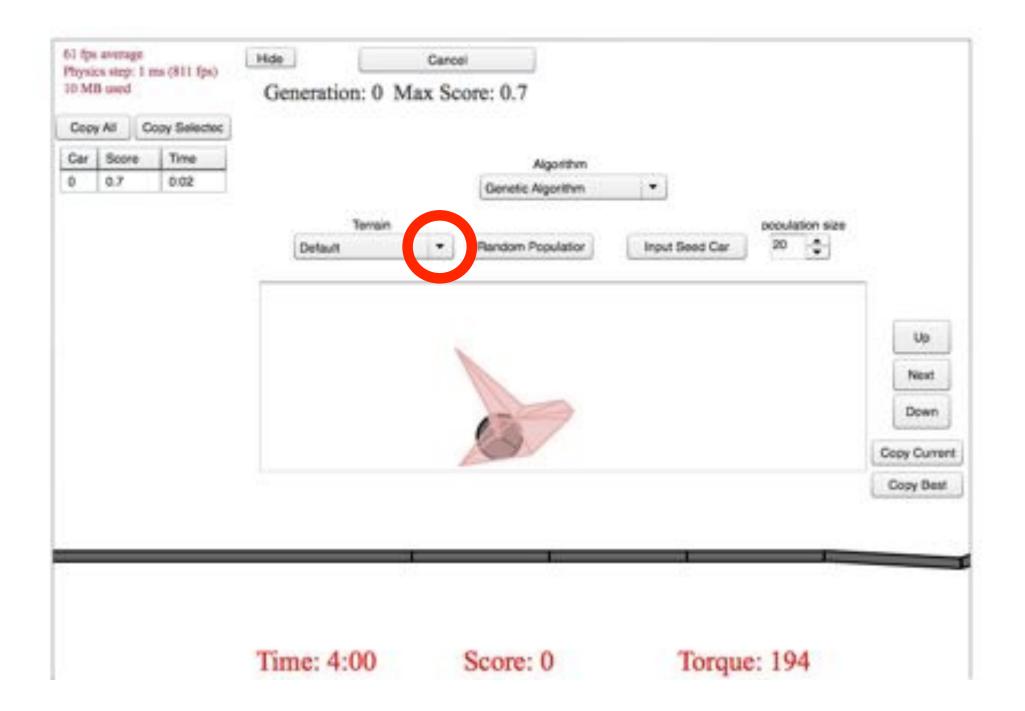

How can we use principles from evolution to improve our Lego cars?

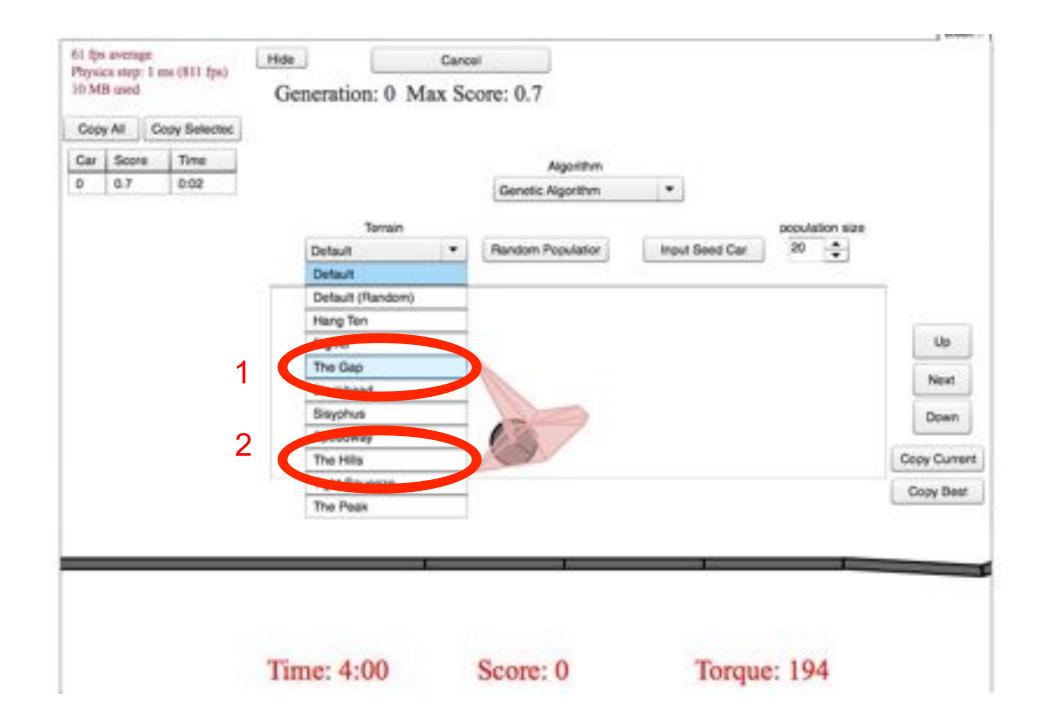
• **Time:** over many generations, the beneficial adaptations will spread through the population

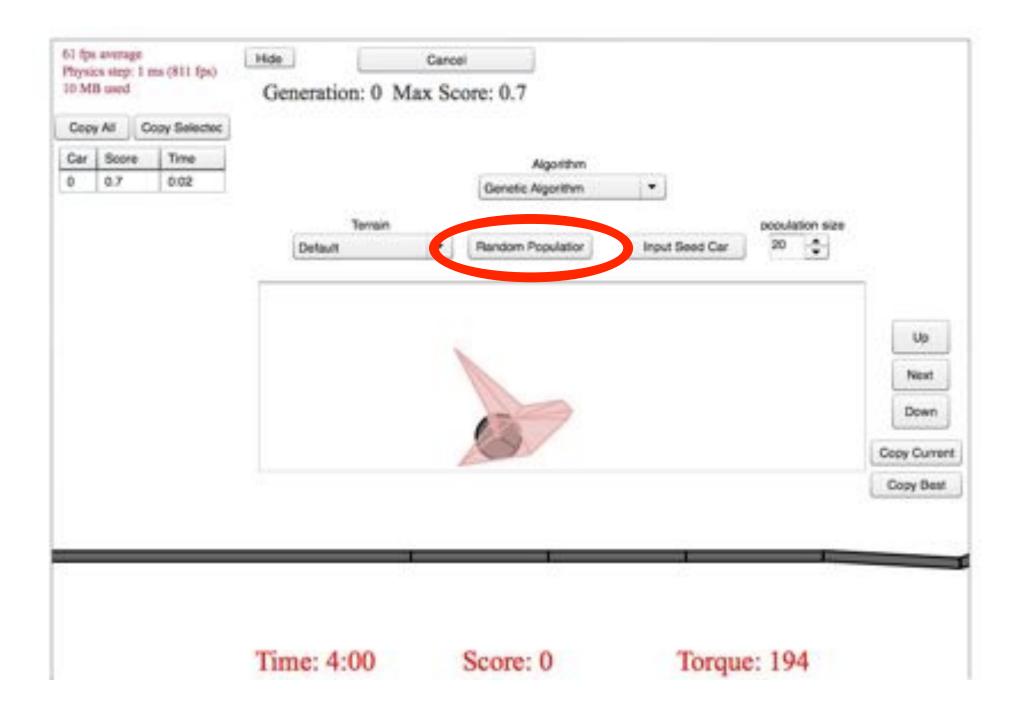
Evolution and Engineering: BoxCar2D

- Computer program for vehicle evolution developed by Ryan Weber
- Virtual environment including the effects of gravity, friction, collisions, motor torque, and spring tension
- Each car represents an individual in a population
- Each generation the cars move along a track, with distance traveled considered their "fitness"
- To produce the next generation, cars mate their traits recombine, and some mutation adds additional variation to produce offspring

Open web browser and go to: **WWW.BOXCar2D.COM**




BoxCar 2D


Home | Designer | Best Cars | Foram | News | FAQ | The Algorithm | Versions | Contact

Computation Intelligence Car Evolution Using Box2D Physics (v3.2)

BoxCar2D Worksheet: beginning

Name_____

Date____

Track_____

Keep this round of evolution running in the background

Don't close the window or open new tabs – only open new windows!!

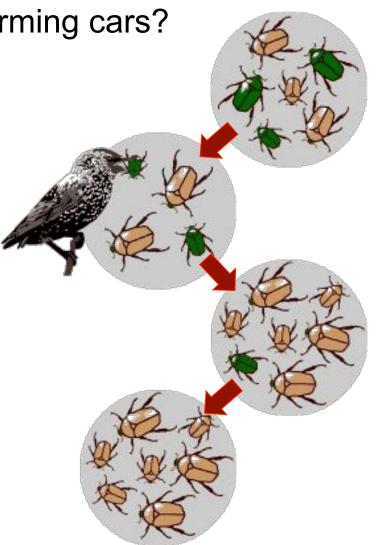
Observing evolution by natural selection in BoxCar2D (note interesting things you see - don't have to record everything!)

Generation	Car #	Score	Time	Notes
	1.00000000	10000000		
			<u>.</u>	
			÷	
	1 1			
			-	

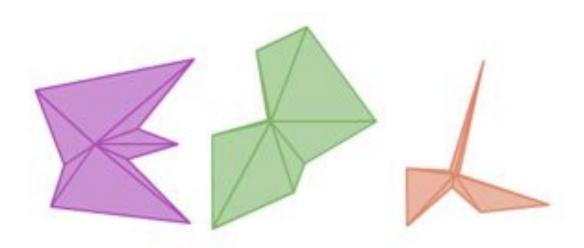
59 fps average Physics step: 2 ms (612 fps) 10 MB used

Cop	Copy Al Copy Selected					
Car	Score	Time				
0	0	0.02				
1	9.6	0.05				
2	2.0	0.03				
3	5.9	0.08				
4	0	0.00				
5	0.5	0.00				
6	0.5	0.02				
7	6.8	0.04				
8	100	0:12				
9	4.2	0.02				
10	16.8	0.07				
11	0	0.00				
12	1.7	0.02				
13	0.4	0:00				
14	1.7	0.01				
15	0.8	0.01				
+4	0	0.00				

Hide Input Seed / Choose Terrain 100 Generation: 0 Max Score: 100


Observing evolution in BoxCar2D

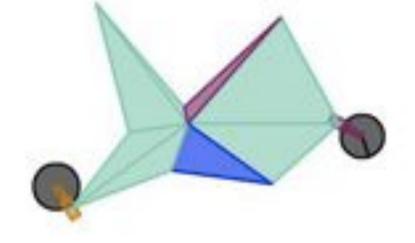
50


Evolution & Engineering:

How does BoxCar2D use principles from evolution to develop better performing cars?

- Variation
- Inheritance
- Selection
- Time

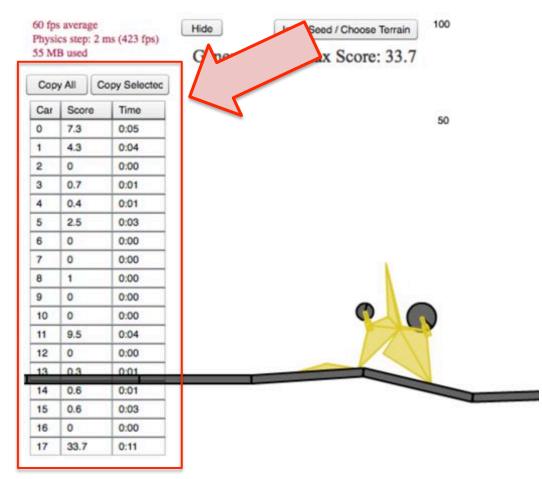
Evolution as a process: variation



Each car is represented by one chromosome, with 40 variables on each chromosome

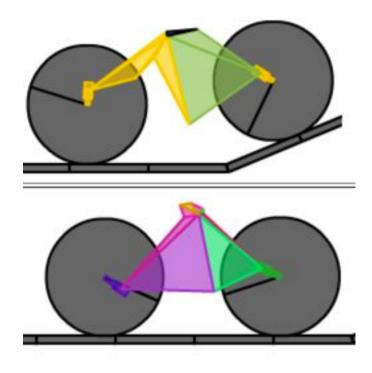
All of the car's traits are coded on the chromosome: how many wheels, angles, length, speed...

Evolution as a process: variation


- Where does the variation come from?
- Initial variation from randomly-generated cars
- Chromosomes undergo mutation at a user-set rate each generation; mutated traits are marked by a color change

		Angle5	Mag5				-	WheelVertex0
0.305	2.752	0.376	2.507	0.814	1.963	0.392	2.872	3
0.305	2.752	0.376		0.814	1.963	0.392	2.872	4

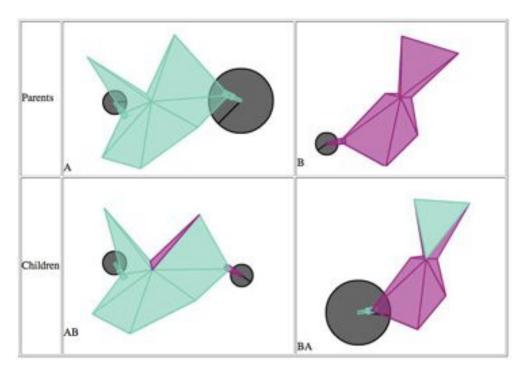
Evolution as a process: variation


Each population contains 20 unique individuals

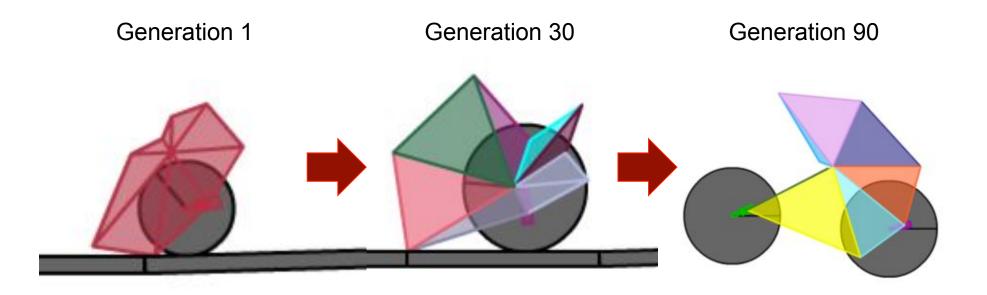
Evolution as a process: selection

At the end of each generation, cars are paired up to "reproduce"

Cars that move the furthest get "mated" most often, so they contribute most to the next generation



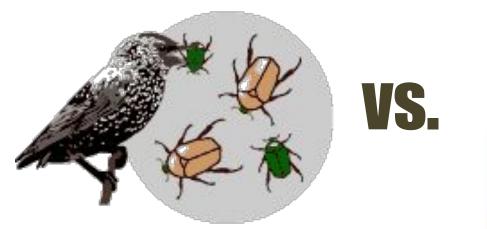
Evolution as a process: inheritance


Car	Angle0	Mag0	Angle1	Mag1								AxleAngle1	WheelRadius1
A	0.769	2.614	0.584	0.319	0.278	2.883	0.666	1.13	0.305	2.752	0.376	2.625	1.191
В	0.535	2.682	0.732	2.256	0.422	0.149	0.676	0.578	0.709	2.774	0.592	0.167	0.409
AB	0.535	2.682	0.584	0.319	0.278	2.883	0.666	1.13	0.305	2.752	0.376	2.625	0.409
BA	0.769	2.614	0.732	2.256	0.422	0.149	0.676	0.578	0.709	2.774	0.592	0.167	1.191

A lot like meiosis...

Parent chromosomes "cross over" twice to produce offspring that are a mixture of traits

over many generations, adaptations will spread through the population; traits that work less well will dwindle


• Keep the program running for many generations, and watch the cars evolve over time!

	s average	t 1 ms (811 fps)	Hide	Input Seed / Choose Terrain	223
	B used	i ma (orr iba)	Generation:	3 Max Score: 223.2	2
Cop	y All	Copy Selectec			
Car	Score	Time			
0	223.2	0:17			111
1	223.2	0:17			
2	54.7	0:13			
3	178.7	0:15			
4	220.7	0:16			
5	0	0:00			
6	1.6	0:02			
7	15.9	0:14			
8	0.2	0:00			
9	0	0:00			
10	1.3	0:01			1
11	0.1	0:00			K
12	39.9	0:20			
13	192.8	0:16			
14	208.5	0:18			Y A
15	1.8	0:02			
16	0	0.00	and the second se		

- Variation
- Inheritance
- Selection
- Time (generations)
- Design??

BoxCar allows you to add design into your vehicles along the way

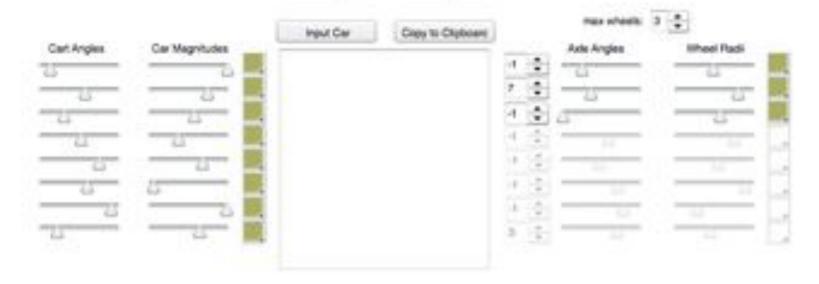
- How does this differ from evolution by natural selection?
- What are potential issues to address when using BoxCar to reinforce principles of evolution in your classroom?



BoxCar 2D

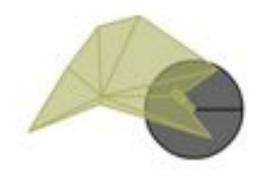
Home | Designer | Best Cars | Forum | News | EAQ | The Algorithm | Versions | Contact

Computation Intelligence Car Evolution Using Box2D Physics (v3.2)


COPYING A CAR OUT OF THE POPULATION:

-Click on the row in the table representing the car you want

-Click "copy selected"


-Paste into a new population on a new track, or back into the designer

Evolution with hand-engineering in BoxCar2D (excerpted from boxcar2d.com/about.html)

Derp Bike Designer

Torque: 333.94 Cart Mass: 14.84 Wheel&Axle Mass: 3 Torque/Mass: 18.59

Evolution with hand-engineering in BoxCar2D

(excerpted from boxcar2d.com/about.html) INSTRUCTIONS WILL STAY ON THE SCREEN- DON' T COPY THEM DOWN!

- Importing your designed car into the program:
 - In the Derp Bike Designer, click "copy to clipboard"
 - Go to the main page, click "input seed/choose terrain" keep on the same track
 - Click in the box that pops up and hit control-V to paste your car's code
 - Click "input seed car" to start running
- Your car will show up first; the next ones in the population will be mixtures of your design and random cars

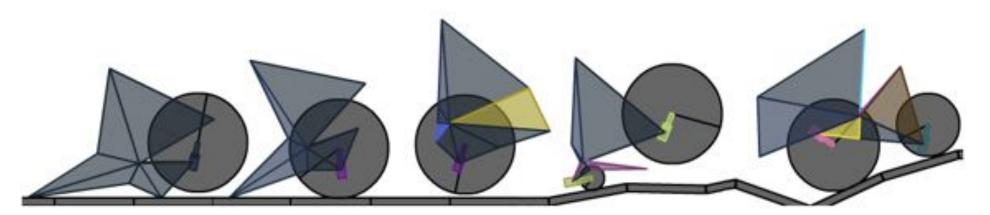
BoxCar2D Design Worksheet: beginning

Name _____

Date____

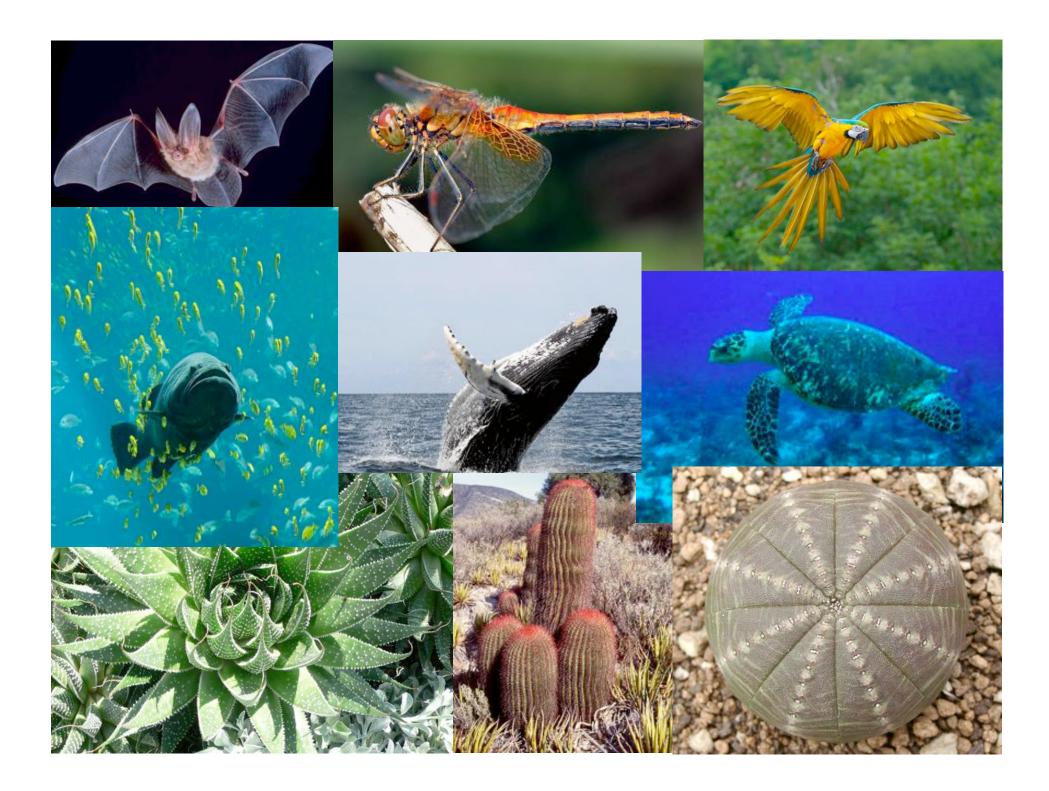
Track_____

Draw your design



Score and time of hand-designed car:

Observe the population - record interesting points (not everything!)


Generation	Car #	Score	Time	Notes
		-		

- Share some of the cars that are evolving
- Do different populations on the same track look similar? Would we expect them to?
- What traits (features of your successful cars) do you think might be adaptations to your track?

Convergence

- Independent evolution of a similar solution to the same kind of natural selection (looks the same, but took a different path to get there)
- Engineering: different ways to solve the same problem
- Brainstorm examples? (Engineering or biology)

Extensions

- Testing predictions about manipulating population size and/or mutation rate
- Tree thinking: building evolutionary trees, saving code or images of cars at nodes as "fossils"
- Invasiveness: in reciprocal transplants, do cars evolved on track "A" ever do better on track "B" than cars evolved on track "B"?
- Full-circle inquiry exercises
 - Students come up with their own questions
 - Emphasizing replication
 - Statistical testing t-test or ANOVA using fitness

Cool cars!

eNqzfxySMo1Vbqf9z

+ZNZoJaFvYrZ4LALAe2A6tOmD2ot3+mphD6/7a1/ Rt5N+dpTU/s72gu3Xo/Pt/+n6zx9Q0xn +DqORjAwP4aU/eM5xGP7H+sXDij4rCX/ Ytsq8cv59213wlRh64eCFgdGDnUStmUJtnf4YlqyT vTAjbnhsL8aKVdy+wPe1uGeEv/ AAox2v92+Hcgu83F/ qb9lSLVMj6gGIsDz9OcMrNVTvaPQ0lsZpf+/g8E9g ++PdaMDu2w/wGxACz2MyJ6gm9HH8wdQGFm +28XHp36n8MEUwcWu/bXMTxRewZc3el// xiQAYh/+t9phtMzGBiAFAQDxfi5rRj +VTcyJM7jZtipKcHwhNuO4XKuClAHEwAUb5JX

Acknowledgements

Ryan Weber

Tom Getty

Mike Wiser

Bjorn Ostman

BEACON HS Institute students

QUESTIONS, FEEDBACK?

