Apr 272014


Human impacts on the environment are progressively altering ecosystems across the world. In this lesson we explore the dramatic effects of these human impacts on a well-known example, Monarch butterflies, and introduce realistic steps students can take to help address this problem. In the first part of this lesson students will play a game where they will learn the hazards facing Monarch butterflies on their annual migration from Mexico to the Midwest. In the middle of the lesson students will learn how to build a butterfly garden at their schools that will provide critical breeding resources to Monarchs as well as attract and support other butterfly species. We provide resources where you can find milkweed seeds to plant in your own garden. At the end of the lesson we provide a Butterfly Garden Bingo exercise to help students explore other plants and animals that can be found in established butterfly gardens. This exercise can be used with the BEST plots or in your own garden.

At the conclusion of the lesson, students will be able to:

  • Explain several reasons why milkweed populations in the United States are in decline and how this threatens Monarch butterfly populations
  • Explain why milkweed is an important resource for Monarchs
  • Construct a butterfly garden as a refuge for Monarchs and other butterflies
  • Identify other plants and animals in established butterfly gardens (or the BEST plots!).

Length of Lesson

Full lesson: 60 min class period

Monarch Migration Game only: 30 min

Butterfly Garden Bingo only: 20-30min

Grade Levels



Lesson created by Dustin Kincaid, Cara Krieg, and Susan Magnoli, 2014

Jan 212013

pic2This lesson will explore how plant traits like seed dispersal (e.g., wind-dispersed, animal-dispersed, etc.), seed hardiness, and land-use history influence the assembly of weed communities following a major disturbance (e.g., construction of a BEST plot, agricultural field, or garden plot). The focus will be on volunteer species (read: weeds) most commonly found in the BEST plots across the network. The lesson begins by providing students background information on seed traits and land use legacies. After covering this information, participants will do a brief activity that involves making predictions about which plant traits make weeds made most successful. Students will spend the remaining portion of the lesson analyzing and interpreting volunteer species abundance data from the BEST plot network.

At the conclusion of the lesson, students will be able to:

  • List and describe four different plant dispersal mechanisms
  • Describe three determinants of “how a plant got there” (dispersal mechanism, seed bank longevity, effect of landscape)
  • Better interpret histograms and scatterplots


Lesson Plan created by GK-12 Fellows Tyler Bassett, Dustin Kincaid, and Cara Krieg, 2012


Nov 062012

The timing of recurring life cycle events for plants and animals, like flowering and migration, are largely determined by cues organisms take from the climate. Scientists who study phenology, or the timing of these natural events, are interested in how climate change, particularly rising global temperatures and unpredictable transitions between seasons, will influence the timing of phenological events. For example, what can we expect to happen to the migration timing of birds, the mating season for animals, or the flowering times in plants? Further, how might abiotic seasonal changes like melt dates for lakes and rivers respond to climate change? To answer these questions, scientists turn to long-term datasets to examine whether shifts in phenological events are occurring over extended periods of time.

Long-term datasets are extremely useful because scientists can examine average trends in timing shifts over periods of decades and often in different regions. Citizen science has played a major role in curating many of these datasets. Citizen science is essentially research conducted by “crowdsourcing” – individuals collect data and contribute to a large dataset that can then be analyzed to address scientific questions. Phenology data is easy to collect and involves observations that we make every day, but hardly ever record. Technology makes it extremely easy to record, aggregate, and store citizen science data online for future use.

In this lesson we will use a few of these datasets to go through the scientific process of forming and testing hypotheses using real data. Students will be able to examine changes in phenology over 30+ year timespans, and address the scientific question, “Do we see evidence for climate change in the phenology of plants and animals?” We will also discuss how students as a class can start curating their own long-term phenological datasets by observing organisms in your schoolyard or BEST Plots!

At the conclusion of the lesson, students will be able to:

  • Define phenology and give examples in plants and animals
  • Graph phenology data
  • Interpret results from a graph
  • Make claims about organismal responses to climate change
  • Identify locations where they can submit citizen science data they collect


 Lesson plan written and created by GK-12 Fellows Liz Schultheis and Dustin Kincaid, 2012